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ABSTRACT
We present 3MileBeach, a tracing and fault injection plat-
form designed for microservice-based architectures. 3Mile-
Beach interposes on the message serialization libraries that
are ubiquitous in this environment, avoiding the application
code instrumentation that tracing and fault injection infras-
tructures typically require. 3MileBeach provides message-
level distributed tracing at less than 50% of the overhead
of the state-of-the-art tracing frameworks, and fault injec-
tion that allows higher precision experiments than existing
solutions. We measure the overhead of 3MileBeach as a
tracer and its efficacy as a fault injector. We qualitatively
measure its promise as a platform for tuning and debugging
by sharing concrete use cases in the context of bottleneck
identification, performance tuning, and bug finding. Finally,
we use 3MileBeach to perform a novel type of fault injec-
tion - Temporal Fault Injection (TFI), which more precisely
controls individual inter-service message flow with temporal
prerequisites, and makes it possible to catch an entirely new
class of fault tolerance bugs.

CCS CONCEPTS
• Software and its engineering→ Software testing and
debugging; Traceability; • Computer systems organi-
zation → Dependable and fault-tolerant systems and
networks.
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1 INTRODUCTION
Infrastructures that support cross-cutting concerns such as
tracing [26, 57] and fault injection [34] have become part of
the software quality ecosystem [25] for microservice-based
applications. Distributed tracing provides developers and
operators with detailed explanations of the events during a
particular client-level request or system execution. These
explanations, which may span both component and layer
boundaries, have myriad applications in performance tun-
ing [18, 32, 55] and debugging [28, 52, 65]. While the tracing
infrastructure observes distributed executions, fault injection
frameworks provide support for perturbing them by creat-
ing or simulating faults such as machine crashes, errors and
delays. These frameworks complement existing software
quality mechanisms (e.g., continuous integration [59]) that
allow developers to rigorously check whether their applica-
tions succeed in tolerating these faults.

Unfortunately, supporting tracing and fault injection func-
tionalities can be prohibitively costly in terms of actual ex-
penditures (e.g., for proprietary solutions), runtime overhead,
and programmer effort (e.g., making invasive changes to
heterogeneous application and infrastructure code). A key
challenge is finding suitable interposition points [43, 44, 64]
for recording (or perturbing) system state in a landscape in
which components are implemented in various languages
and communicate via multiple transport mechanisms. To
take advantage of tracing and fault injection capabilities, de-
velopers have to navigate a trade-off between precision (e.g.,
the quality of the signal during tracing and the granularity at
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which faults can be injected) and the cost (e.g., programmer
efforts and runtime overhead).
We present 3MileBeach, a new distributed tracing and

fault injection framework for microservices. 3MileBeach
interposes at the message serialization library layer to trans-
parently provide fine-grained tracing and fault injection ca-
pabilities. 3MileBeach requires only conditional and limited
application-level instrumentation. It provides fine-grained
tracing at 25%-50% of the overhead of the state-of-the-art
while capturing strictly richer traces that enable new analy-
ses. 3MileBeach simulates faults at the granularity of individ-
ual requests, supporting massively concurrent failure tests
without blast radius [16, 27], making it suitable for testing in
production. Finally and most importantly, we contribute TFI,
a novel class of fault injection, based on temporal predicates;
that can identify bugs that would have lain dormant in the
current state-of-the-art.

This paper is structured as follows. In § 2 and § 3, we dis-
cuss state-of-the-art tracing and fault injection frameworks,
and identify a new class of bug that is, to the best of our
knowledge, not addressed by any existing technology. In § 4,
we study microservice frameworks (§ 4.1) and discuss how
we implemented 3MileBeach with context-propagation [49]
mechanisms. In § 5, we measure 3MileBeach’s performance
as a tracer (§ 5.2), discuss its efficacy as a fault injector (§ 5.3),
and show how 3MileBeach provides a platform for rapid
innovation of problem localization in different applications
(§ 5.4).

2 BACKGROUND
In this section, we review the history of tracing and fault in-
jection infrastructures in the context of modernmicroservice-
based architectures. We show how a key challenge in choos-
ing and deploying both distributed tracing and fault injection
is navigating the trade-off between precision and cost in in-
strumentation.

2.1 Tracing Frameworks
Despite being only a little more than a decade old, the land-
scape of tracing infrastructures has grown relatively ma-
ture. Nearly all existing systems share a common lineage in
XTrace [38], Dapper [62], or both.

XTrace is an early and influential cross-layer tracing
framework based on context-propagation to correlate trace
entries across layers, machine, administrative boundaries, etc.
Application and infrastructure code must be instrumented
so as to 1) extract context from inputs, 2) possibly update
that context with local information, and 3) ultimately in-
clude the context with any outputs. A variety of recent sys-
tems [45, 48, 50] trace their lineage to XTrace. XTrace and
its inheritors represent a trace as an arbitraryDirectedAcyclic

Graph (DAG) [33] where labeled nodes represent system
events, and edges represent causation.

Dapper was pioneered at Google for the narrower use case
of performance tracing for service-oriented architectures.
Like XTrace, Dapper also relies on context-propagation.
Due to their largely homogeneous infrastructure, Google
was able to amortize the effort of instrumentation; e.g., an
RPC library that supports thousands of applications need be
instrumented only once. Unlike XTrace, Dapper represents
a trace as a tree of spans, or annotated intervals of local com-
putation. This (less general) representation is appropriate
to the request-response communication that is common to
microservice-based architectures, in which it is reasonable
to assume that every request has a response. Most existing
open-source tracing frameworks, including X-Ray [1], Open-
Tracing [14], OpenZipKin [24], and Jaeger [61], are direct
descendants of Dapper and inherit its data model and overall
architecture.

A significant cost of tracing systems is their overhead con-
sisting of the runtime overhead and the instrumentation
overhead incurred by programmers to propagate context
through applications. Once this instrumentation effort is
complete, adding additional instrumentation points is an in-
cremental effort. Still, these high table stakes are a significant
deterrent to the adoption of tracing in the first place. Another
key weakness of Dapper-based tracing infrastructures is that
they are best-effort in nature. The reasons are twofold: First,
since the collection infrastructures are asynchronous, re-
quested traces may be incomplete because trace components
have been delayed or lost; Second, more fundamentally, since
span-based models assume two-way communication among
nodes in a tree of service calls, they propagate their data
only along with request (non-response) flows. Consequently,
it is impossible to distinguish a structurally incomplete trace
from which some subgraph is missing from a complete trace.
Unfortunately, complete traces are needed when it comes to
TFI cases, since the total history carried by complete traces
are the key evidence that help us judge whether the temporal
prerequisites are satisfied or not.

2.2 Fault Injection Frameworks
Fault injection has a long history in software engineering,
and dependability communities [36, 46, 51], but the use of
large-scale fault injection infrastructures for the resilience
testing of distributed systems is barely a decade old. As a
consequence, the ecosystem is substantially more varied and
less mature than that of tracing.

Netflix’s Chaos Monkey [42] was a pioneer in Stochastic
Fault Injection (SFI). Chaos Monkey creates a background
radiation of component failures in production systems by
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randomly terminating virtual machines during test execu-
tions. Less a testing methodology than a social phenomenon,
Chaos Monkey created a culture of resilience. Developers
grew to expect remote services to be frequently unavailable,
and to mask or mitigate these faults.
Subsequent iterations of SFI developed into a discipline

called chaos engineering [2, 27, 56]. Chaos Monkey provides
a single answer both to the mechanisms for fault injection
(terminating instances of virtual machines) and to the strat-
egy for choosing experiments (uniformly and randomly),
while second-generation infrastructures [23, 53, 54, 60] de-
couple these concerns, presenting an API to specify indi-
vidual experiments (i.e., allowing users to specify individual
services to where inject faults). These systems, in many cases,
also improve the precision of the fault injectors, targeting
individual containers in managed infrastructures; in some
cases, individual requests [22, 23] (i.e., specifying which in-
teractions to target). SFI approaches also generalize beyond
crash faults, simulating delay, network partitions, and ex-
plicit transport-level error messages (i.e., specifying how to
inject or simulate fault events).
In large part, chaos testing approaches have migrated

away from the Netflix model of testing in production, com-
bining fault injection with software engineering reliability
techniques such as integration tests in staging environments.
One example of these Principled Fault Injection (PFI) ap-
proaches is Chaos Toolkit [3]. Chaos Toolkit provides a
modular automatic framework for controlled chaos experi-
ments. The implementations of fault injectors are factored
away into a variety of drivers, making it compatible with
open source fault injection solutions as well as state-of-the-
art proprietary solutions [8]. Unlike the background radiation
of approaches such as Chaos Monkey, Chaos Toolkit per-
forms one experiment at a time. First, the steady state of
the system is observed. In practice, the observation could
be as simple as asserting that a particular integration test
succeeded, or as nuanced as a collection of key metrics (e.g.,
system throughput, latency distributions, error counts, etc.)
with tolerances. Then the system is perturbed, typically by
effectuating systems faults via a driver, and the observation
is repeated to see if there is a delta. Finally, service is fully
restored by terminating the fault injection. The PFI approach
adopted by systems like Chaos Toolkit makes it possible
to explore the space of possible fault experiments systemati-
cally, and in some cases, to make the effects of experiments
reproducible.

Instead of crashing instances or virtual machines, Request
Level Fault Injection (RLFI) approaches like ALFI [22] and
FIT [23] simulate faults during fault injection tests. RLFI ap-
proaches subsume and outperform Chaos Toolkit since
RLFI approaches also determine the faults to be simulated

on a per-request basis while supporting concurrent fault in-
jections.

In Table 1, we summarize and categorize the criteria of the
aforementioned fault injection frameworks into five main
aspects.

Table 1: Taxonomy of Fault Injection Frameworks.
Five criteria: 𝐶1) the ability to support concurrent ex-
periments; 𝐶2) avoid blast radius; 𝐶3) trigger TFI bugs;
𝐶4) reproduce bugs; and 𝐶5) avoid application-level in-
strumentation.

Approach 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5
SFI × × ✓1 × ✓
PFI × ✓ × ✓ ✓
RLFI ✓ ✓ × ✓ ×
TFI ✓ ✓ ✓ ✓ ✓2

The varied landscapes of tracing and fault injection suffer
from many similar problems. The interposition required to
realize fault injection often has prohibitive costs. Unlike trac-
ing, after a one-time instrumentation effort adding additional
finer-grained details has incremental costs, high precision

fault injection (specifying which interactions to interpose
on) is only available as a proprietary technology. Unfortu-
nately, as described in § 3, even the most sophisticated fault
injectors still leave an important class of bugs on the table.

3 MOTIVATION: A TIMING PROBLEM
The tracing and fault injection ecosystems are very differ-
ent despite of their similar mechanisms. Costs aside, trace
collection infrastructures are relatively mature and provide
homogeneous capabilities while fault inject infrastructures
remain in flux.

The current state-of-the-art systematic fault injection for
distributed systems has suffered from two fundamental prob-
lems. First, while coarse-grained mechanisms that crash in-
dividual virtual machine instances or containers are wide-
spread, users who wish to enjoy the benefits of simulation,
concurrent experimentation, and freedom from a blast radius
must turn to proprietary solutions. Second, there is an essen-
tial class of bugs that no existing fault injection technology is
expressive enough to discover to the best of our knowledge.
1The randomness of Chaos Monkey in principle triggers TFI-like faults,
but lacking logical timing (discussed in § 3.2) makes the results not so
reproducible.
23MileBeach still needs one-time efforts to modify 1) application code
that import packages, and files that manage dependencies (e.g., pom.xml,
build.gradle, requirements.txt, etc.), making 3MileBeach the dependency;
2) generated files of serialization libraries (e.g., Protocol Buffers [15],
Flutter [12], etc.), making messages carry 3MileBeach’s payloads; 3)
application code if and only if a little portion of libraries still require semantic
but tracing-unrelated modifications.
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3.1 TOCTTOU Bugs
Consider a service, Frontend, that orchestrates an electronic
commerce application. Frontend is invoked when a user is
ready to purchase the items in their cart. First, Frontend
sends a message to CardHandler, a downstream service
that validates the user’s credit card information (locally, in
the event of a cache hit, or by invoking a third-party billing
service). If this succeeds, Frontend sends a series of mes-
sages to its downstream services like Product to calculate
the total purchasing price, and CurrencyService to convert
currency if necessary. Otherwise, Frontend tries to validate
the next card, or prompts the user if it cannot find one. Fi-
nally, Frontend sends a message to CardHandler again
to bill the user’s credit card.
Imagine a latent bug exists in Frontend: an incorrect

expectation that the second request to CardHandler (for
billing) would succeed if the first request to CardHandler
(for validation) succeeded. The programmer anticipated that
the third-party billing service might be unavailable, but has
committed a Time Of Check To Time Of Use (TOCTTOU)
error [17, 29, 30]. This assumption is easily violated since
1) the third-party service became unavailable after the first
request; 2) more likely, the third-party service was unavail-
able all along, but a cache hit allowed the validation step to
succeed. During violation, the application returns unintelligi-
ble errors to users that are unsure of whether their card has
been billed or not. Users will retry and may lead to double
payment.

This example is oversimplified. However, similar hazards
exist in any application where a given microservice is in-
voked more than once in the life cycle of a particular client-
level request. Additionally, this example is drawn from a
large space of possible bugs outside the purview of existing
fault injection techniques. To understand this space, we need
to know how individual services in a microservice-based
application can be sensitive to faults in other services that
they depend on, and to what extent this sensitivity can be
time-varying.

3.2 Temporal Discretization
Systematic fault injection tools such as Chaos Toolkit do
not consider faults in time dimension. Instead, they assume
that faults either happen (or don’t) during the life cycle of
a client-level request flow, as opposed to at an arbitrary
time in the request flow. This assumption prevents such
approaches from reaching TOCTTOU bugs. Unfortunately,
adding a dimension of time to fine-grained fault injectors by
making them specify when in addition to which, how, and
where is doomed from the start. First, time is continuous, and
the fault space is already too large to exhaustively explore!
Second, time is an elusive notion in distributed systems; it

would not be meaningful (or repeatable) for a fault injector
to be directed to inject a fault at a particular service at an
exact real time.

Hope is not lost. Triggering timing-related bugs in a given
application never requires sweeping the (infinite) space of
real time. Our solution to this problem is to divide real time
into a (small) set of discrete equivalence classes such that
injecting any two faults in the space (e.g., the same faults
at different real times) would be indistinguishable to the
service(s) under test.
Consider the example described in § 3.1. The TOCTTOU

bug in Frontend can be triggered by the injection of a sin-
gle service crash. Unfortunately, the temporal discretiza-
tion [19, 35] taken by existing fault injectors, where faults
are injected strictly before the test or randomly during the
test, is too coarse-grained to trigger the bug. Note that the
sentinel event that separates the interval during which the
crash of CardHandler will be tolerated by Frontend is the
completion of Frontend’s first call to it. That is, crashes will
be tolerated before this event but not after. What’s more, this
example generalizes communication events - sending and
receiving of messages to downstream services, punctuating
the otherwise continuous time dimension.
Based on this insight, even if treat Frontend as a black

box, we can still observe four discrete logical time (𝑡 ) intervals
externally where CardHandler may crash. As shown in
Figure 1, these intervals are:

1) before Frontend’s first request (𝑡 < 𝑡0);
2) between Frontend’s first request andCardHandler’s

first response (𝑡0 ≤ 𝑡 < 𝑡1);
3) between CardHandler’s first response and Fron-

tend’s second request (𝑡1 ≤ 𝑡 < 𝑡2);
4) between Frontend’s second request and CardHan-

dler’s second response (𝑡2 ≤ 𝑡 < 𝑡3).
Any two crashes in the same logical interval look the same

to Frontend, and hence will be sufficient to trigger any
temporal-related bugs, not just this one!

Figure 1: Timeline. A service processes two requests
(𝑅𝑒𝑞1 and 𝑅𝑒𝑞2) in a client-level request flow.

3.3 Communication is The Thing
The critical insights behind TFI are the following. First, an
upstream service may tolerate faults in a downstream ser-
vice for parts of a request lifetime and fail to tolerate them
at another time. However, as shown by Figure 1, the space of
logical times at which a service’s tolerance of downstream
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bugs might change is far from infinity in practice. Injecting a
given fault at every logical state of service’s implicit state ma-
chine [47, 58] is sufficient to exercise every possible behavior
in response. Each received message triggers a state transition,
and each sent message is caused by a state transition. We
can approximate the opaque state machine of microservices
from the outside by simply interposing on a system at a place
that has a purview into communication. From 3MileBeach’s
perspective, two states are considered the same when they
obtain the same communication (received-sent message) pat-
terns.

3MileBeach’s tracing functionality correlates effects with
causes across machine boundaries and in the face of concur-
rency, while its fault injection functionality simulates faults
that the software is expected to tolerate. When choosing
interposition points in an arbitrary distributed system, the
fundamental difficulty is the trade-off between minimizing
the cost and maximizing the precision.
In a microservice-based architecture, however, there is

a convenient choke point located precisely at the bound-
ary between communication components: the libraries that
are used to serialize (and deserialize) message payloads to
(and from) wire formats such as JSON [11] and Protocol
Buffers. In practice, 3MileBeach takes communication as
interposition point that requires a one-time effort of modify-
ing serialization libraries (one for each language-format) and
limited (i.e., tracing-unrelated application- or infrastructure-
level) instrumentation. This choice gives us an economy
of mechanism for tracing and fault injection. 3MileBeach
adorns messages with trace metadata, as the state-of-the-art
tracing systems do, propagates each outgoing message the
context of the inbound request or requests that directly lead
to it. 3MileBeach also takes advantage of this mechanism
to propagate fault injection configurations that allow us to
target particular requests during fault injection. After all,
faults in remote services are invariably witnessed at compo-
nent boundaries, and are manifested as delay, explicit errors,
or corrupt messages [31]. There is no blast radius of faults
since the simulations are confined to a particular client-level
request context, which permits lightweight and concurrent
tests.

Finally, interposing based on context-propagation mecha-
nisms allows us to devise the first practical fault injector to
realize TFI. Our modifications to the third-party libraries per-
mit context-propagation on request and response messages.
Therefore, whenever a message of any kind is received, it
carries the complete causal history of service calls carried by
trace events witnessed by its sender, associated with the cur-
rent client-level request. Fault injection logic then inspects
the causal history to determine:

1) whether the given request has been singled out for
injection (which);

2) whether the current service should simulate the fault
(where);

3) what kind of fault to simulate (how);
4) and finally, when we simulate the fault (now or later?).

4 IMPLEMENTATION
During implementation, we studied different design patterns
of microservice frameworks. We chose a common context-
propagation mechanism (§ 4.1) and applied data structures
to carry 3MileBeach’s payload (3mb-payload) to support
tracing and fault injection functionalities (§ 4.2). In § 4.3, we
introduce the algorithms we apply to collect traces and to
inject faults.

4.1 Architecture Abstraction
The microservice architecture [37] is designed to separate
application features into independently implemented ser-
vices that communicate using well-defined APIs. A natu-
ral approach to manage complexity is using a microservice
framework that abstracts message transport mechanisms,
microservice placement on both physical and virtualized re-
sources, and the infrastructure itself [4, 13]. However, the
abstractions that microservice frameworks provide also con-
tribute to significant heterogeneity amongst applications.

3MileBeach takes advantage of the constraints of the mi-
croservice architecture to provide tracing and fault injection
with only one assumption about microservice implementa-
tions or infrastructure. That is, a microservice framework
provides each microservice with a plumbing abstraction such
as service handlers that allow services to associate logic (e.g.,
handler function) with inbound and outbound messages (i.e.,
requests and responses). In Figure 2, we refer to the compo-
nents that lie adjacent to the boundaries between the service
handler and the microservice frameworks as boundary com-

ponents (i.e., inbound function and outbound function).
Despite the distinct framework implementations and ap-

plication programming languages, every microservice frame-
work provides mechanisms to link service handlers to the
boundary components. Panorama [40] introduced four de-
sign patterns of component interactions

3 by abstracting ob-
servability as directionwhich directly calls handler functions,
and indirection that asynchronously invokes handler func-
tions with (in-/out-) queues/proxies as cache layers. During
our study of microservice frameworks, we generalized the
four design patterns:
𝑃1) Full direction. All functions are assigned to a single

thread where the inbound component, service handler,
and the outbound component are sequentially called;

3In this paper, we use communication.
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𝑃2) Inbound indirection. In-queue stores inbound mes-
sages before the worker thread picks one, calls the
service handler, and then invokes the outbound com-
ponent;

𝑃3) Outbound indirection. Inbound component and the
service handler are called directly in a worker thread
while the outbound messages are sent to out-queue for
further network transportation;

𝑃4) Full indirection. The worker thread picks inbound
messages from in-queue, invokes the service handler,
and sends the outbound message to out-queue.

Patterns 𝑃2, 𝑃3 and 𝑃4 apply explicit context-propagation
mechanisms that pass essential identification information
through boundary components and the service handler, re-
gardless of the implementation of the service handler. The
remaining pattern, Full Direction, can easily link inbound
and outbound messages with the service handler via thread
metadata [63] since boundary components and the service
handler are executed in the same thread. As a simplifica-
tion, we claim that 𝑃1 also performs a shadow and implicit

context-propagation mechanism. Thus, we can apply 3Mile-
Beach to aforementioned design patterns through existing
context-propagation mechanisms.
Figure 2 provides a high-level view of service handlers,

boundary components, and inbound/outbound messages.
3MileBeach takes advantage of third-party libraries’ exist-
ing context-propagation mechanisms to abstract the patterns
mentioned above as a cell model, upon which tracing and
fault injection functionalities are implemented. In general,
the inbound component deserializes raw inbound messages
extracted from the network, and invokes the service han-
dler. The outbound component processes outboundmessages
from the service handler, then sends the data as outgoing
messages. The participation of boundary components on
every request and response makes them ideal interposition
points without application-level knowledge. 3MileBeach
collects and propagates 3mb-payloads by interposing the
boundary components and treating service handlers as black
boxes.
Base on these abstractions, we demonstrate two typical

data flows, Direct Response Circle (DRC) and Synchronized
Request-Response Circle (SRC), in an abstracted architecture
of microservice frameworks and service handlers. Libraries
(e.g., gRPC [9] and language-specific ones such as Go Go-
rilla [7]), deserialize inbound messages from the network
before invoking a service handler and serialize the outbound
message into wire format. Both deserialization and serial-
ization are done by serialization libraries (e.g., Protocol
Buffers, JSON, etc.).

Figure 2: Cell Model. Direct Response Circle (⇒) and
Synchronized Request-Response Circle (→).

4.2 Data Structure
3mb-payload is concretely represented by Trace, which is
the top-layer data structure when we interpose on the third-
party libraries. Trace consists of a list of event-s (Event-s),
essential trace metadata (e.g., ID) that helps 3MileBeach
identify and assemble events of a specified trace, and a list
of fault injection configuration-s (FIC-s).

4.2.1 Event. An instance of Event records essential infor-
mation of an event, that is, when (Timestamp) a Service
receives or sends (Action) a request or response (Type) with
a certain name (Name). 3MileBeach has various methods
to fetch Type and Name (e.g., from type definitions, mes-
sage description files, etc.), depending on the libraries and
programming languages. UUID, which is generated auto-
matically by the requester’s outbound component, helps
3MileBeach identify and assemble all the events related
to a particular SRC. Requester’s and responder’s boundary
components sign Service with the services’ signatures (in
the absence of programmer annotations), which are usually
UUIDs.

As shown in Figure 3, there are four events associated with
the sameUUID, indicating the life cycle of a single SRC. Two
of them are recorded by the requester (𝑆𝑣𝑐1) when it sends a
request (𝑅𝑒𝑞1) at 𝑡1 and receives the corresponding response
(𝑅𝑠𝑝1) at 𝑡4, and the other two events are recorded by the
responder (𝑆𝑣𝑐2) at 𝑡2 and 𝑡3.

4.2.2 Fault Injection Configuration. We use fault injection
configuration (FIC) to describe the objective of a TFI or RLFI
test case. In the remainder of the paper, we use 𝑛 to represent
the number of services within a certain microservice-based
application. Consider an application consists of 𝑛 services,
namely 𝑆𝑣𝑐0, 𝑆𝑣𝑐1, . . . , 𝑆𝑣𝑐𝑛−1.
RLFI injects faults to services prior to the life cycle of a

client-level request. We use FIC{Type: Crash, Name: 𝑆𝑣𝑐𝑖 }
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Figure 3: Four Events Associated with an SRC.

to denote simulating crashes involving 𝑆𝑣𝑐𝑖 . To test all pat-
terns of crashing services, the space of RLFI experiments
consists of a power set of 2𝑛 cases in total4. However, when
we are testing a particular client-level request, we will not
invoke all the services of the application. Say, if 𝑚 out of
𝑛 services will not be invoked, we might waste time per-
forming experiments that involve irrelevant services. We
can reduce the total number of test cases from 2𝑛 to 2𝑛−𝑚
by preventing the fault injection framework from affecting
unrelated services, which reveals an immediate benefit of
closely coupling tracing and fault injection infrastructures.
In many cases, a single integration test will suffice to en-
rich the number of relevant services to project future fault
injection experiments.
Unlike RLFI that determines the status of services at the

beginning of a test, TFI simulates faults during a certain
test execution according to logical timings. During a TFI
test case, 3MileBeach determines the behavior of the re-
sponder(s) when the requester sends each individual request.
We use After, a list of TFIMetas, to store all the temporal
prerequisites of the faults. The space of faults that TFI can
trigger is a superset of that of RLFI faults since RLFI is a
special case of TFI when After is empty. More importantly,
FIC massively reduces the space of TFI tests by applying
temporal discretization. As shown in Figure 1, suppose 𝑆𝑣𝑐1
receives 𝑅𝑒𝑞1 and 𝑅𝑒𝑞2 from 𝑆𝑣𝑐0 in processing a client-level
request. RLFI only determines whether the two requests
both succeed or fail. If we want to fail 𝑅𝑒𝑞2 without affecting
𝑅𝑒𝑞1, we should simulate the fault at any real time inter-
val (𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ) where 𝑡1 ≤ 𝑡𝑠𝑡𝑎𝑟𝑡 < 𝑡2 and 𝑡3 < 𝑡𝑒𝑛𝑑 . Since
time is continuous, we will get a infinite (𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ) set. TFI
shrinks the space of the (𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ) set by simulating the
crash exactly at time 𝑡𝑠𝑒𝑛𝑑 (𝑡1 < 𝑡𝑠𝑒𝑛𝑑 < 𝑡2) when 𝑆𝑣𝑐0 sends
𝑅𝑒𝑞2 to 𝑆𝑣𝑐1. To describe this case, we can use FIC{Type:
Crash, Name: 𝑅𝑒𝑞2, After: [TFIMeta{Name: 𝑅𝑒𝑞1, Times:
1}]}. 3MileBeach does not assign the entire trace to the re-
quest messages to guide fault injection. Instead, an evidence

4For simplicity, we always count the case that injects no faults.

of whether 𝑅𝑒𝑞1 has been called will be attached to the re-
quest messages since downstream services only need the
information that is relevant to the FICs.

It is not practical to create FICs for complex applications
by hand. During evaluation, we used a thick client to exhaus-
tively generate FICs within RLFI or TFI space. In the future,
we will offload the problem of experiment selection to an
offline tool such as LDFI [20, 21] to get more efficient and
precise experiment guidance.

4.3 Algorithms
In this section, we discuss how 3MileBeach interposes on
the boundary components by making serialization functions
operate 3mb-payloads (§ 4.3.1), and the role of the re-written
serialization functions in the data flows (§ 4.3.2).

4.3.1 Interpose via Serialization Functions. All messages sent
and received among services are transformed by serialization
functions (referred as Deserialize and Serialize) to and
from wire formats. To trace the services that participate in
processing a client-level request, 3MileBeach extends the se-
rialization functions. The names of the extended serialization
functions are Deserialize’ and Serialize’.

Through a service’s local storage 𝑆 , 3MileBeach is able to
link inbound and outbound messages regardless of the ser-
vice handler. 3MileBeach uses 𝑆 to store a trace associated
with a context object, 𝐶𝑡𝑥 . 𝐶𝑡𝑥 is derived from the existing
context-propagation mechanism that carries request meta-

data. 3MileBeach makes 𝐶𝑡𝑥 carry trace metadata repre-
sented by ID, which is initialized by the client. In the inbound
component, 3MileBeach gets ID from the inboundmessages
and assigns ID to𝐶𝑡𝑥 (#L13, Algorithm 1). When the service
handler sends messages, 3MileBeach takes advantage of
context-propagation mechanisms to add the obtained Trace
(stored in 𝑆) to the outbound messages (#L8-9, Algorithm 2).
In Table 2, we describe some essential functions.

4.3.2 Serialization Functions and Data Flows. In the follow-
ing, we rephrase Algorithm 1 and 2 in terms of the data flows
discussed in Figure 2, and describe the four distinct pairings
of action (SEND and RECV) with message type (REQUEST
and RESPONSE).

Direct Response Circle (DRC).

1=⇒ Framework RECVs a REQUEST from an upstream ser-
vice or the client;

2=⇒ Inbound component invokes Deserialize’ which calls
Deserialize to deserialize the REQUEST (#L3), ex-
tends the 𝑡𝑟𝑎𝑐𝑒 by recording the 𝑒𝑣𝑒𝑛𝑡 (#L10), stores
the 𝑡𝑟𝑎𝑐𝑒 to 𝑆 (#L11), and assigns trace metadata to
𝐶𝑡𝑥 (#L13);

3=⇒ Framework invokes service handler and waits until
the life cycle of the invocation ends;
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Table 2: Descriptions of Essential Functions

Name Description
GetUUID Gets 𝑢𝑢𝑖𝑑 according to 𝑎𝑐𝑡 (𝑖𝑜𝑛) − 𝑡𝑦𝑝𝑒: 1) SEND-REQUEST. On capturing the first event of an

SRC, GetUUID generates a new uuid for the requester; 2) The Rest. The uuid can be fetched from
𝑡𝑟𝑎𝑐𝑒 .Events recorded by the other service that participates in the same SRC.

trace.Extend Extends the input 𝑒𝑣𝑒𝑛𝑡 to 𝑡𝑟𝑎𝑐𝑒 .Events and updates 𝑡𝑟𝑎𝑐𝑒 .FICs.
S.ExtendTrace Gets 𝑡𝑟𝑎𝑐𝑒 by ID, calls 𝑡𝑟𝑎𝑐𝑒 .Extend(event), and eventually returns 𝑡𝑟𝑎𝑐𝑒 .
S.SetTrace Upserts 𝑡𝑟𝑎𝑐𝑒 according to 𝑡𝑟𝑎𝑐𝑒 .ID. More specifically, during updates, 𝑆 merges the Events from

both traces and recalculates 𝑡𝑟𝑎𝑐𝑒 .FICs.

Algorithm 1 Deserialize’
1: 𝑎𝑐𝑡 = RECV
2: function Deserialize’(𝑑𝑎𝑡𝑎)
3: 𝑚𝑠𝑔 = Deserialize(𝑑𝑎𝑡𝑎)
4: if 𝑚𝑠𝑔 contains a valid trace then
5: 𝑡𝑟𝑎𝑐𝑒 =𝑚𝑠𝑔.Trace()
6: 𝑡 = CurrentTimestamp()
7: 𝑡𝑦𝑝𝑒, 𝑛𝑎𝑚𝑒 =𝑚𝑠𝑔.Type(),𝑚𝑠𝑔.Name()
8: 𝑢𝑢𝑖𝑑 = GetUUID(𝑎𝑐𝑡, 𝑡𝑦𝑝𝑒, 𝑡𝑟𝑎𝑐𝑒)
9: 𝑒𝑣𝑒𝑛𝑡 = Event(𝑡, 𝑎𝑐𝑡, 𝑡𝑦𝑝𝑒, 𝑛𝑎𝑚𝑒,𝑢𝑢𝑖𝑑)
10: 𝑡𝑟𝑎𝑐𝑒 .Extend(𝑒𝑣𝑒𝑛𝑡 )
11: 𝑆 .SetTrace(𝑡𝑟𝑎𝑐𝑒)
12: if 𝑡𝑦𝑝𝑒 == REQUEST then
13: 𝐶𝑡𝑥 .ID = 𝑡𝑟𝑎𝑐𝑒 .ID
14: return𝑚𝑠𝑔

Algorithm 2 Serialize’
1: 𝑎𝑐𝑡 = SEND
2: function Serialize’(𝑚𝑠𝑔)
3: if 𝐶𝑡𝑥 .ID associated with a trace from 𝑆 then
4: 𝑡 = CurrentTimestamp()
5: 𝑡𝑦𝑝𝑒, 𝑛𝑎𝑚𝑒 =𝑚𝑠𝑔.Type(),𝑚𝑠𝑔.Name()
6: 𝑢𝑢𝑖𝑑 = GetUUID(𝑎𝑐𝑡, 𝑡𝑦𝑝𝑒, 𝑡𝑟𝑎𝑐𝑒)
7: 𝑒𝑣𝑒𝑛𝑡 = Event(𝑡, 𝑎𝑐𝑡, 𝑡𝑦𝑝𝑒, 𝑛𝑎𝑚𝑒,𝑢𝑢𝑖𝑑)
8: 𝑡𝑟𝑎𝑐𝑒 = 𝑆 .ExtendTrace(𝐶𝑡𝑥 .ID, 𝑒𝑣𝑒𝑛𝑡 )
9: 𝑚𝑠𝑔.SetTrace(𝑡𝑟𝑎𝑐𝑒)
10: if 𝑡𝑦𝑝𝑒 == RESPONSE then
11: 𝑆 .DeleteTrace(𝐶𝑡𝑥 .ID)
12: else if 𝑡𝑦𝑝𝑒 == REQUEST then
13: 𝑒𝑟𝑟 = SimulateFault(𝑡𝑟𝑎𝑐𝑒)
14: if need to return 𝑒𝑟𝑟 then
15: return 𝑒𝑟𝑟

16: 𝑑𝑎𝑡𝑎 = Serialize(𝑚𝑠𝑔)
17: return 𝑑𝑎𝑡𝑎

4=⇒ Framework gets the RESPONSE;
5=⇒ Outbound component invokes Serialize’ that retrieves

𝑡𝑟𝑎𝑐𝑒 from 𝑆 with the trace metadata from𝐶𝑡𝑥 and ex-
tends the 𝑡𝑟𝑎𝑐𝑒 by recording the SEND 𝑒𝑣𝑒𝑛𝑡 (#L8),

deletes 𝑡𝑟𝑎𝑐𝑒 (#L11), and calls Serialize (#L16) to seri-
alize the RESPONSE;

6=⇒ Framework SENDs the RESPONSE back to the up-
stream service or the client.

Synchronized Request-Response Circle (SRC).

1−→ Service handler SENDs a REQUEST to the downstream
service through a blocked function call;

2−→ Outbound component invokes Serialize’ that retrieves
𝑡𝑟𝑎𝑐𝑒 from 𝑆 with 𝐶𝑡𝑥 which has already been stored
when the microservice RECVed a REQUEST from the
upstream service or the client, extends the 𝑡𝑟𝑎𝑐𝑒 by
recording the SEND 𝑒𝑣𝑒𝑛𝑡 (#L8), simulates fault (#L13),
and calls Serialize to serialize the REQUEST if no
error codes are returned to the service handler (#L16).
The following steps are taken when #L15 has not been
reached;

3−→ Framework SENDs the REQUEST to the downstream
service and waits for the RESPONSE;

4−→ Framework RECVs the RESPONSE;
5−→ Inbound component invokes Deserialize’ that calls

Deserialize to deserialize the RESPONSE (#L3), ex-
tends the 𝑡𝑟𝑎𝑐𝑒 by recording the RECV 𝑒𝑣𝑒𝑛𝑡 (#L10),
and stores the 𝑡𝑟𝑎𝑐𝑒 to 𝑆 (#L11);

6−→ Service handler will RECV the RESPONSE as a return
value of a blocked function call.

4.3.3 Fault Simulation. 3MileBeach performs fault injec-
tion by simulating the externally visible effects of a down-
stream fault that caused by network transportation or by
the responder handler, from the perspective of the requester.
Since 3MileBeach does not actually crash and restore ser-
vices during fault injection, we can test multiple fault injec-
tion cases concurrently and control blast radius.

A typical SRC contains two services (i.e., a requester and
a responder) and two data flows (i.e., a request flow and a
response flow). When a fault is triggered, the requester is
unaware of the root cause of the downstream fault; instead,
depending on its implementation, it will witness the fault
through status codes or return values such as timeout, con-
nection closed, package loss, etc. What’s more, we can better
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control the behavior of service handlers than that of data
flows since 3MileBeach works upon the boundary compo-
nents lie between services and data flows.

Function SimuateFault mentioned in Algorithm 2 reads
every FIC from FICs. 3MileBeach will trigger faults when
the prerequisites defined by FICs are satisfied. Since 3Mile-
Beach simulates faults when the requester sends requests,
user written error handlers will receive the exact error codes
like timeout or service crash, and cannot distinguish whether
the error codes are caused by the simulated faults or by
the actual ones. Once requesters have collected new 𝑒𝑣𝑒𝑛𝑡𝑠

(#L11, Algorithm 1 and #L8, Algorithm 2), 3MileBeach re-
calculates After by refreshing every TFIMeta according to
newly captured Events.

5 EXPERIMENTAL STUDY
In this section, we describe our experimental environment
(§ 5.1), measure the End-To-End (E2E) latency overhead of
3MileBeach as a tracer in comparison to the state-of-the-
art (§ 5.2), demonstrate the efficacy of 3MileBeach as a
fault injector (§ 5.3), and provide two examples of localizing
problems (§ 5.4).

5.1 Environment Setup
We applied 3MileBeach to Hipster Shop [10], a microser-
vice demo application (the application) that we deployed on
Google Kubernetes Engine (GKE) [6]. A client program (the
client) generates test cases for the application to help us per-
form tracing and fault injection, apply performance tuning,
and locate bugs.

5.1.1 Application. Hipster Shop consists of ten services:
Frontend (𝑆𝑣𝑐𝐹𝐸 ), Cart (𝑆𝑣𝑐𝐶𝑎𝑟𝑡 ), Recommendation, Pro-
ductCatalog (𝑆𝑣𝑐𝑃 ), Shipping, Currency (𝑆𝑣𝑐𝐶 ), Payment,
Email, Checkout, and Ad (𝑆𝑣𝑐𝐴). Hipster Shop has a mod-
erate complexity of services and topology, making it an vi-
able platform to test 3MileBeach’s functionality and perfor-
mance. The data serialization, transportation, and framework
libraries (JSON, Protocol Buffers, RESTful, GRPC, Go-
rilla, etc.) applied in Hipster Shop are universal among
microservice-based applications. Hipster Shop’s services
are written in five languages (Go, C#, Node.js, Python, and
Java), which helps testing the language generality of 3Mile-
Beach.

5.1.2 Clusters. As shown in Table 3, nodes of clusters are
chosen fromGKE’s first generation general-purposemachine
types (n1-standard family). Cluster1 and Cluster2 have 16
vCPUs and 60GB of memory individually. Both clusters are
deployed in the same zone (us-west1-b).

5.1.3 Client. The client sends requests to 𝑆𝑣𝑐𝐹𝐸 under vari-
ous levels of concurrency. In this paper, we use 𝑁 to denote

Table 3: Cluster Configurations

Name Machine Type CPU Mem #
Cluster1 n1-standard-2 2 7.5GB 8
Cluster2 n1-standard-16 16 60GB 1

concurrency (i.e., 𝑁 = 1, 2, 4, ..., 128). We deploy the client
in the same cluster as the application to minimize network
latency between the client and 𝑆𝑣𝑐𝐹𝐸 .

During test executes, the client first generates 3mb-payloads

that contains trace metadata, empty Events, and particular
FICs. Then 3mb-payloads are injected to the request mes-
sage sent by the client. Finally, the client collects traces and
generates reports.

5.2 Tracing Benchmark
It is unavoidable that we impose some overheadwhen collect-
ing traces, and we must be careful not to impose too much
of a penalty when inspecting an application. To study the
imposed overhead of 3MileBeach as a tracer, we collected
tracing benchmarks of 3MileBeach and compared against
Jaeger, a popular tracing framework, and the instrumented
application.

5.2.1 Test Cases. The client generates requests with 3mb-

payloads injected and sends them to /home, an endpoint of
𝑆𝑣𝑐𝐹𝐸 . To satisfy a client request, 𝑆𝑣𝑐𝐹𝐸 generates calls to four
downstream services that will respond to five GRPC requests
including 𝑆𝑣𝑐𝐴’s GetAds (𝑅𝑒𝑞𝐴1), 𝑆𝑣𝑐𝐶𝑎𝑟𝑡 ’s GetCart, 𝑆𝑣𝑐𝐶 ’s
GetCurrencies (𝑅𝑒𝑞𝐶1) and CurrencyConversion (𝑅𝑒𝑞𝐶2),
and 𝑆𝑣𝑐𝑃 ’s ListProduct (𝑅𝑒𝑞𝑃1).
As a Dapper-style tracer, Jaeger requires initialization

and annotations in the application-level code to define spans,
and collects or stores traces locally before pushing them to
a centralized database. Since Jaeger does not collect spans
from 𝑆𝑣𝑐𝐶𝑎𝑟𝑡 , to get an apples-to-apples comparison, 3Mile-
Beach will not collect events from 𝑆𝑣𝑐𝐶𝑎𝑟𝑡 , either. However,
3MileBeach is still able to simulate faults to 𝑆𝑣𝑐𝐶𝑎𝑟𝑡 due to
the interposition point which is located at 𝑆𝑣𝑐𝐹𝐸 ’s outbound
component.

We ran the application under three different settings: with
3MileBeach enabled (3MileBeachOn) as the tracer, with
Jaeger enabled (JaegerOn), and a baseline with no tracer
enabled (TracerOff). Each setting was executed in mul-
tiple rounds to calculate an averaged result with a corre-
sponding standard deviation. The client sent out a total of
131,072 (= 1, 024 ∗ 𝑁𝑚𝑎𝑥 = 1, 024 ∗ 128) requests during each
round. This allowed us to directly compare the overhead
of 3MileBeach to that of Jaeger in terms of baseline. To
get a fair comparison, we made Jaeger’s spans only carry
the same amount of information (i.e., message name, action,
type, timestamp, etc.) as 3MileBeach’s Event does.
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5.2.2 Throughput and End-to-End Latency. Figure 4 shows
how throughput and E2E latency changes in response to
more workload. 3MileBeach outperformed Jaeger in all
cases. When 𝑁 was 128 on Cluster2, both tracers reached the
worst case where the overhead of Jaeger climbed rapidly to
168.4% while that of 3MileBeach grew smoothly to 42.1%,
and Jaeger only reached one-third of the throughput in
comparison to the baseline. Note that there exists a trade-off
between higher message overhead and fewer network trans-
portation. The former causes throughput loss while the latter
helps improve the performance. 3MileBeach makes the data
flow carry traces, which enables the client retrieve traces
from the responses. Jaeger generates and tries to submit
spans whenwitnessing the events. Although Jaeger has pool
or buffer that reduces the number of network transportation,
it still requires additional postmen to carry traces, which
leads to more messages. This result showed that the number
of messages sent contributes more to throughput overhead
than larger message size does, which allows 3MileBeach to
maintain high performance.

5.2.3 Overhead and Sample Rate. 3MileBeach supports trace
sampling. The sample rate determines the percentage of
client-level requests that will be traced. To understand the
impact of higher or lower sample rates on overhead, we
fixed 𝑁 to 128 and varied the sample rate from 1/1 to 1/64.
As shown in Table 4, we can cut the overhead in half by
lowering the sample rate from 1/1 to 1/4. Furthermore, if
we lower the sample rate to 1/256, we can barely observe
overheads.

Table 4: End-to-End Latency Overhead. The baselines
of Cluster1 and Cluster2 are 56.3 ms and 38.0 ms.

(a) Cluster1

Sample Rate Overhead
1/1 19.9%
1/4 7.45%
1/16 6.97%
1/64 5.33%

(b) Cluster2

Overhead
46.3%
18.4%
14.1%
7.34%

5.3 Fault Injection
To demonstrate how quickly 3MileBeach can sweep the
space of TFI test cases, we performed a set of experiments
designed to reach bugs in the application. We deliberately
left two bugs in 𝑆𝑣𝑐𝐹𝐸 :

DeepRLFI. DeepRLFI can be reached without temporal
conditions, and can be triggered if and only if both 𝑆𝑣𝑐𝐴
and 𝑆𝑣𝑐𝐶 are down, that is, we need to apply 3mb-payloads
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Figure 4: Throughput-Latency of Three Settings. Over-
heads are shown in parentheses.

that crash both 𝑆𝑣𝑐𝐴 and 𝑆𝑣𝑐𝐶 (Figure 5c). Any other 3mb-

payloads that only involving 𝑆𝑣𝑐𝐴 (Figure 5b) or 𝑆𝑣𝑐𝐶 (Figure
5a) individually cannot reach DeepRLFI.

SimpleTFI. SimpleTFI is a TOCTTOU bug similar to what
has been described in § 3.1. To trigger SimpleTFI, we need
to let requests carry 3mb-payloads that fail 𝑆𝑣𝑐𝐶 after it has
received the second request during processing a client request
(Figure 5d).

5.3.1 Test Cases. The client generates 3mb-payloads, and
detects 500-type errors for three fault injection strategies:

Targeted-Exhaustive RLFI. The client exhaustively simu-
lates faults (i.e., crashes) among four microservices that are
related to endpoint /home, which covers the combinatorial
space of 16 tests. This targeted approach of pruning the space
of experiments is enabled by the mechanism of 3MileBeach
that combines tracing and fault injection. We can use the
same infrastructure to “turn on the lights” and get an idea
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(a) During the first call to 𝑆𝑣𝑐𝐶 , 𝑆𝑣𝑐𝐹𝐸 is fault-tolerant: if 𝑆𝑣𝑐𝐶 is ac-
cessible, 𝑆𝑣𝑐𝐹𝐸 assumes that 𝑆𝑣𝑐𝐶 will be accessible at all time; if not,
𝑆𝑣𝑐𝐹𝐸 will apply a fallback strategy (Fallback1) that uses default cur-
rency and prices. If we apply RLFI to simulate crashes involving 𝑆𝑣𝑐𝐶 ,
the client can still get proper results.

(b) When 𝑆𝑣𝑐𝐴 is not accessible, 𝑆𝑣𝑐𝐹𝐸 will apply a fallback strategy
(Fallback2) that uses the default advertisement and sends 𝑆𝑣𝑐𝐶 a re-
quest to convert the currency. If we apply RLFI to simulate crashing
𝑆𝑣𝑐𝐴 , the client can still get proper results.

(c) During Fallback2, 𝑆𝑣𝑐𝐹𝐸 will not check the accessibility of 𝑆𝑣𝑐𝐶
anyway, no matter whether Fallback1 has been applied or not. When
we apply 3mb-payloads that simulate crashing services including
𝑆𝑣𝑐𝐴 and 𝑆𝑣𝑐𝐶 , the client will receive a 500 error.

(d) When we apply 3mb-payloads that simulate crashing 𝑆𝑣𝑐𝐶 during
𝑆𝑣𝑐𝐶 ’s second invocation, the client will receive a 500 error due to the
TOCTTOU fault in 𝑆𝑣𝑐𝐹𝐸 .

Figure 5: Fault Injection Tests. (✓: request succeeds; !: the requester handles responder’s failure via fallback strate-
gies; ?: fallback strategies do not send requests to the responder; ×: the requester can not handle responder’s
failure.)

of what services may actually be involved in a particular
client request by tracing the system before performing fault
injection experiments. In practice, the four relevant services
might be selected by an expert, either human or AI, who
understands the semantics of the system.

Exhaustive RLFI. Different from the behavior of executing
Targeted-Exhaustive RLFI tests, the client exhaustively and
“blindly” simulates faults among all possible nine microser-
vices in the applicationwith 𝑆𝑣𝑐𝐹𝐸 excluded. Exhaustive RLFI
covers the combinatorial space of 512 tests, containing the
aforementioned 16 Targeted-Exhaustive RLFI tests.

Targeted-Exhaustive TFI. During a normal process of the
endpoint /home, there will be 14 requests sent among four
services. In this case, the client exhaustively simulates faults
to the 14 requests with temporal conditions, covering the
combinatorial space of 16384 tests, including 16 Targeted-
Exhaustive RLFI tests.

5.3.2 Performance. During performance test, we applied
3MileBeach and ran Exhaustive RLFI, Targeted-Exhaustive
RLFI and Targeted-Exhaustive TFI onCluster2, and recorded
3mb-payloads that caused 500-type errors. As a compari-
son, we applied another round of Targeted-Exhaustive and
Exhaustive RLFI by using command-line tools (Command)
to crash and restore microservices. Command, including
docker [4] and kubectl [13], are more easily controlled while

providing similar functionalities to Chaos Monkey and
Chaos Toolkit. Algorithm 3 shows how Command per-
forms a fault injection execution through given FICs. Each
run started from a steady state (#L2: all services are ready) to
another steady state (#L11). We used command “docker ser-
vice scale <SERVICE-ID>=0” to shut down a service (#L4), and
command “docker service scale <SERVICE-ID>=1” to restart a
service (#L7). A request was sent by the client after all the
targeted services had been shut down, and before recovery.
During execution, we executed command kubectl get pods

–all-namespaces to check the status of all services. Redeploy-
ment would be triggered when services had failed to restart,
or other services had been affected by blast radius.
Table 5 shows how 3MileBeach’s advantages in crash

simulation and concurrency helped 3MileBeach dramati-
cally outperform Command. Command executed test cases
sequentially. It usually took Command 25 to 30 seconds to
finish a test case that didn’t run into unexpected failures
(e.g., services failed to restart, or affected by blast radius,
etc.). Furthermore, from the “Targeted” test cases, we can
see the improvement when 3mb-payloads are derived from
expertise.

5.4 Localizing Issues: Two Stories
To demonstrate how the techniques described in § 5.2 and
§ 5.3 enable rich application-specific analyses, we introduce
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Algorithm 3 Command
1: function Command(𝑓 𝑖𝑐𝑠)
2: 𝑡𝑠𝑡𝑎𝑟𝑡 = now()
3: for each 𝑓 𝑖𝑐 in 𝑓 𝑖𝑐𝑠 do
4: Shut down service 𝑓 𝑖𝑐.Name

5: Client sends a request, and records status code
6: for each 𝑓 𝑖𝑐 in 𝑓 𝑖𝑐𝑠 do
7: Restart service 𝑓 𝑖𝑐.Name

8: if Services fail to restart, or errors happen in other
services then

9: Redeploy the application

10: Wait until all services are ready
11: 𝑡𝑒𝑛𝑑 = now()

Table 5: Performance of Fault Injection. T and E refer
to Targeted and Exhaustive, respectively.

Type Cases 3MileBeach Command
T-E RLFI 16 200ms 9m34s
E RLFI 512 5s 5h21m
T-E TFI 16384 90s N/A

two stories to demonstrate how to localize performance and
functionality problems.

5.4.1 Performance Tuning. 3mb-payloads collected by the
client allow us to more precisely and carefully study the la-
tencies of requests in the application. This section describes
a story of identifying potential optimization targets by re-
running 3MileBeachOn and allowing the client to deserial-
ize and study the traces. We applied this to Hipster Shop
and were able to identify bottlenecks that we optimized to
improve performance.

The latencies we collected were the E2E latency between
when the client sends a request and receives response, the
Round-Trip (RT) latency between the client and 𝑆𝑣𝑐𝐹𝐸 , and
the processing latencies measured by request handlers 𝑅𝑒𝑞𝐴1,
𝑅𝑒𝑞𝐶1, 𝑅𝑒𝑞𝐶2, and 𝑅𝑒𝑞𝑃1. We denote the average measured
latency of type 𝑇 (e.g., RT, E2E) when the concurrency is
𝑁 as 𝐿𝑇,𝑁 . By increasing 𝑁 , 𝐿𝑇,𝑁 also increases due to the
additional workload. To reduce the inherent differences in
the latencies of different components, we worked with the
normalized latency: 𝑅𝑇,𝑁 =

𝐿𝑇 ,𝑁

𝐿𝑇 ,1
.

We define bottlenecks as measured latencies that indicate
the corresponding services reach maximum capacities faster
than the others as 𝑁 grows. If we plot ⟨𝑁, 𝑅𝑇,𝑁 ⟩ curves on
a ⟨𝑙𝑜𝑔2 (𝑁 ), 𝑙𝑜𝑔2 (𝑅𝑇,𝑁 )⟩ plot, bottlenecks will reveal increas-
ingly higher 𝑅𝑇,𝑁 values as 𝑁 increases. Therefore, we focus
on curves that overwhelm others starting from a certain 𝑁 .
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(a) Before optimization, the bottleneck lies in request
handlers (those of 𝑅𝑒𝑞𝐶1 and 𝑅𝑒𝑞𝐶2)
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(b) After optimization, the bottleneck has moved from
request handlers to the network.

Figure 6: Tuning Results. The bottleneck moved from
services (𝑆𝑣𝑐𝐶 ) to the network (𝑅𝑇 ).

As described in Figure 6a, curves of 𝑅𝑒𝑞𝐶1, 𝑅𝑒𝑞𝐶2 and
𝐸2𝐸 overwhelmed the others when 𝑁 ≥ 4. Since 𝐸2𝐸 is an
overall performance indicator, optimizations should firstly
be applied to 𝑆𝑣𝑐𝐶 , the processor of 𝑅𝑒𝑞𝐶1 and 𝑅𝑒𝑞𝐶2, and
only after that, to other services. The optimizations we made
can be briefly described in three parts:

Optimize 𝑅𝑒𝑞𝐶2 handler. Originally, 𝑅𝑒𝑞𝐶2 handler con-
verted the default currency (USD) of the product to user’s
currency by first converting to EUR, and then from EUR
to user currency. We made 𝑅𝑒𝑞𝐶2 handler convert default
currency directly to user currency.

Optimize 𝑆𝑣𝑐𝐶 ’s upstream service. We optimized the logic
of 𝑆𝑣𝑐𝐹𝐸 to reduce the number of 𝑅𝑒𝑞𝐶2s, and thus lowered
the workload of 𝑆𝑣𝑐𝐶 . When 𝑆𝑣𝑐𝐹𝐸 converts currencies for
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multiple products, it gets the current exchange rate by send-
ing only one 𝑅𝑒𝑞𝐶2 to 𝑆𝑣𝑐𝐶 , and converts the currencies
locally.

Optimize the other request handlers. We discovered that
𝑅𝑒𝑞𝑃1 handler occupied too many disk I/O resources. Instead
of using a database or cache layers, 𝑅𝑒𝑞𝑃1 read product list
from JSON files. We implemented a cache layer to prevent
𝑆𝑣𝑐𝑃 from reading JSON files, leading to a fewer disk I/Os.

The results of the first round of tuning are shown in Figure
6. The bottleneck flipped from the request handlers to the
network, and the throughput increased from 579 op/s to 1278
op/s on Cluster2.
The request handlers were far from reaching their maxi-

mum capacities while the network resource exhausted and
made 𝑅𝑇 the bottleneck. After applying more rounds of opti-
mizations, the throughput of Cluster2 finally reached 2122
op/s.

5.4.2 Root Cause Analyses. Note that fault injection frame-
works aim to identify that bugs exists, but do little to help
isolate or fix bugs. The following story tells how we local-
ized bugs with 3mb-payloads collected from fault injection,
showing that the advantage of coupling tracing and fault
injection makes 3MileBeach’s traces can be used to localize
bugs found by 3MileBeach’s fault injection.

Exhaustive RLFI and DeepRLFI Bug. The DeepRLFI bug can
be reached by crashing 𝑆𝑣𝑐𝐴 and 𝑆𝑣𝑐𝐶 , which might make
an intermediate service, namely 𝑆𝑣𝑐𝐼 , crash or return an
unexpected response to 𝑆𝑣𝑐𝐹𝐸 . However, if triggering faults
involving 𝑆𝑣𝑐𝐼 could also fail 𝑆𝑣𝑐𝐹𝐸 , we should have found
certain 3mb-payloads contain 𝑆𝑣𝑐𝐼 . As shown in Figure 5c,
the root cause of this fault is a DeepRLFI bug that makes
𝑆𝑣𝑐𝐹𝐸 unable to handle the situation when 𝑆𝑣𝑐𝐴 and 𝑆𝑣𝑐𝐶
crash.

Targeted-Exhaustive TFI and SimpleTFI Bug. As illustrated
in Figure 5d, the SimpleTFI bug, a TOCTTOU bug, can be
reached when 𝑆𝑣𝑐𝐹𝐸 gets the proper response from the first
invocation of 𝑆𝑣𝑐𝐶 (TOC), but does not check the status of
the rest requests (TOU). 3MileBeach is able to locate this
fault by applying TFI, enabling users to perform experiments
in ways that existing tools can not cover, or cannot handle
efficiently.

6 CONCLUSION AND FUTUREWORK
While 3MileBeach provides a rich set of mechanisms for
fault injection, we were careful to decouple this from the
problem of the strategy for choosing experiments. In many
cases, our lightweight fault simulation capability makes it
possible to exhaustively search space of experiments. 3Mile-
Beach is intended to augment existing integration testing

approaches, ensuring that fault tolerance guarantees and
expectations are upheld not merely locally (microservice by
microservice), but under composition. 3MileBeach can also
be applied earlier in the software life cycle.
We presented 3MileBeach, a tracer with teeth. 3Mile-

Beach’s design circumvents the common instrumentation
costs required to realize tracing and fault injection capabili-
ties by interposing on boundary components. This interposi-
tion allows us to make guarantees about trace completeness
and offer fault injection precision that exceeds that of state-of-
the-art proprietary solutions. Another strength is that fault
simulation brings no blast radius, allowing fault injection
in production environment. Perhaps most importantly, we
showed how 3MileBeach provides a platform for innovation
in the space of problem localization.

Future Work: For more complicated applications that in-
volve more services, more pairwise communication, and
more discrete temporal intervals, exhaustive searches will
be intractable. We plan to integrate 3MileBeach with exper-
iment selection technologies such as LDFI [20, 21]. A barrier
to entry for LDFI and related techniques is that they as-
sume the existence of fine-grained tracing and fault injection
mechanisms. 3MileBeach readily satisfies this assumption.
To take advantage of TFI, LDFI will need to be extended to
reason about the temporal dimension in traces explicitly.
We also plan to investigate the use of 3MileBeach as

an adjunct to dependency injection techniques during the
unit testing of individual services and integration with step-
oriented debuggers.
This work mostly focused on data flows (i.e., DRC and

SRC) that can provide immediate responses. This scenario
is generic among applications that require instant human-
computer interactions such as searching engine, social me-
dia, online shopping, etc. On the other hand, 3MileBeach
can be extended to support Asynchronous Request-response
Circle (ARC), which is popular among systems that rely
on non-blocking communications and distributed coordina-
tion. Typical examples are data consistency approaches (e.g.,
Zookeeper [41], ETCD [5], etc.) and distributed databases
(e.g., HBase [39]).
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